Clipper
resol_basisfn.h
1
4//C Copyright (C) 2000-2006 Kevin Cowtan and University of York
5//L
6//L This library is free software and is distributed under the terms
7//L and conditions of version 2.1 of the GNU Lesser General Public
8//L Licence (LGPL) with the following additional clause:
9//L
10//L `You may also combine or link a "work that uses the Library" to
11//L produce a work containing portions of the Library, and distribute
12//L that work under terms of your choice, provided that you give
13//L prominent notice with each copy of the work that the specified
14//L version of the Library is used in it, and that you include or
15//L provide public access to the complete corresponding
16//L machine-readable source code for the Library including whatever
17//L changes were used in the work. (i.e. If you make changes to the
18//L Library you must distribute those, but you do not need to
19//L distribute source or object code to those portions of the work
20//L not covered by this licence.)'
21//L
22//L Note that this clause grants an additional right and does not impose
23//L any additional restriction, and so does not affect compatibility
24//L with the GNU General Public Licence (GPL). If you wish to negotiate
25//L other terms, please contact the maintainer.
26//L
27//L You can redistribute it and/or modify the library under the terms of
28//L the GNU Lesser General Public License as published by the Free Software
29//L Foundation; either version 2.1 of the License, or (at your option) any
30//L later version.
31//L
32//L This library is distributed in the hope that it will be useful, but
33//L WITHOUT ANY WARRANTY; without even the implied warranty of
34//L MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
35//L Lesser General Public License for more details.
36//L
37//L You should have received a copy of the CCP4 licence and/or GNU
38//L Lesser General Public License along with this library; if not, write
39//L to the CCP4 Secretary, Daresbury Laboratory, Warrington WA4 4AD, UK.
40//L The GNU Lesser General Public can also be obtained by writing to the
41//L Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
42//L MA 02111-1307 USA
43
44
45#ifndef CLIPPER_RESOL_BASISFN
46#define CLIPPER_RESOL_BASISFN
47
48#include "resol_fn.h"
49
50namespace clipper {
51
52
54
62 {
63 public:
65 void init( const HKL_info& hklinfo, const ftype& power );
67 void init( const HKL_data_base& hkldata, const ftype& power );
69 void init( const HKL_data_base& hkldata, const Cell& cell, const ftype& power );
70 };
71
72
74
77 {
78 public:
80 BasisFn_binner( const HKL_info& hklinfo, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hklinfo, power ); }
82 BasisFn_binner( const HKL_data_base& hkldata, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hkldata, hkldata.base_cell(), power ); }
84 ftype f_s( const ftype& s, const std::vector<ftype>& params ) const;
86 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
88 FNtype type() const { return LINEAR; }
90 int num_diagonals() const { return 1; }
92 ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
94 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
95 private:
96 Resolution_ordinal s_ord; //<! resolution ordinal
97 };
98
99
101
104 {
105 public:
107 BasisFn_linear( const HKL_info& hklinfo, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hklinfo, power ); }
109 BasisFn_linear( const HKL_data_base& hkldata, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hkldata, hkldata.base_cell(), power ); }
111 ftype f_s( const ftype& s, const std::vector<ftype>& params ) const;
113 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
115 FNtype type() const { return LINEAR; }
117 int num_diagonals() const { return 2; }
119 ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
121 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
122 private:
123 Resolution_ordinal s_ord; //<! resolution ordinal
124 };
125
126
128
131 {
132 public:
134 BasisFn_spline( const HKL_info& hklinfo, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hklinfo, power ); }
136 BasisFn_spline( const HKL_data_base& hkldata, const int& nbins_, const ftype power = 1.0 ) : BasisFn_base( nbins_ ) { s_ord.init( hkldata, hkldata.base_cell(), power ); }
138 ftype f_s( const ftype& s, const std::vector<ftype>& params ) const;
140 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
142 FNtype type() const { return LINEAR; }
144 int num_diagonals() const { return 3; }
146 ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
148 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
149 private:
150 Resolution_ordinal s_ord; //<! resolution ordinal
151 };
152
153
155
157 {
158 public:
162 //ftype f_s( const ftype& s, const std::vector<ftype>& params ) const;
164 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
166 //ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
168 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
170 ftype scale( const std::vector<ftype>& params ) const;
172 ftype u_iso( const std::vector<ftype>& params ) const;
173 };
174
175
177
179 {
180 public:
184 const BasisFn_base::Fderiv& fderiv_coord( const Coord_reci_orth& xs, const std::vector<ftype>& params ) const;
186 //ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_coord( hkl.coord_reci_orth( cell ), params ); }
188 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_coord( hkl.coord_reci_orth( cell ), params ); }
190 ftype scale( const std::vector<ftype>& params ) const;
192 U_aniso_orth u_aniso_orth( const std::vector<ftype>& params ) const;
193 };
194
195
197
202 {
203 public:
207 //ftype f_s( const ftype& s, const std::vector<ftype>& params ) const;
209 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
211 //ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
213 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const
214std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
216 FNtype type() const { return LINEAR; }
218 ftype scale( const std::vector<ftype>& params ) const;
220 ftype u_iso( const std::vector<ftype>& params ) const;
221 };
222
223
225
230 {
231 public:
235 const BasisFn_base::Fderiv& fderiv_coord( const Coord_reci_orth& xs, const std::vector<ftype>& params ) const;
237 //ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_coord( hkl.coord_reci_orth( cell ), params ); }
239 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const
240std::vector<ftype>& params ) const { return fderiv_coord( hkl.coord_reci_orth( cell ), params ); }
242 FNtype type() const { return LINEAR; }
244 ftype scale( const std::vector<ftype>& params ) const;
246 U_aniso_orth u_aniso_orth( const std::vector<ftype>& params ) const;
247 };
248
249
251
253 {
254 public:
258 const BasisFn_base::Fderiv& fderiv_s( const ftype& s, const std::vector<ftype>& params ) const;
260 //ftype f( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return f_s( hkl.invresolsq( cell ), params ); }
262 const BasisFn_base::Fderiv& fderiv( const HKL& hkl, const Cell& cell, const std::vector<ftype>& params ) const { return fderiv_s( hkl.invresolsq( cell ), params ); }
263 };
264
265
266} // namespace clipper
267
268#endif
simple anisotropic Gaussian basis function
Definition resol_basisfn.h:179
U_aniso_orth u_aniso_orth(const std::vector< ftype > &params) const
return the anisotropic U corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:248
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:188
const BasisFn_base::Fderiv & fderiv_coord(const Coord_reci_orth &xs, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:220
ftype scale(const std::vector< ftype > &params) const
return the scale factor corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:243
BasisFn_aniso_gaussian()
constructor:
Definition resol_basisfn.h:182
object holding the basis function and its first two derivatives
Definition resol_fn.h:74
abstract base class for resolution function basis functions
Definition resol_fn.h:67
FNtype
enumeration of function types: optionally used to improve convergence
Definition resol_fn.h:70
simple binning basis function
Definition resol_basisfn.h:77
BasisFn_binner(const HKL_data_base &hkldata, const int &nbins_, const ftype power=1.0)
constructor: include only non-missing reflections in histogram
Definition resol_basisfn.h:82
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.h:94
ftype f_s(const ftype &s, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.cpp:98
FNtype type() const
the type of the function: optionally used to improve convergence
Definition resol_basisfn.h:88
ftype f(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:92
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the derivative of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:106
int num_diagonals() const
number of non-zero diagonals in the upper triangle of the curvatures
Definition resol_basisfn.h:90
BasisFn_binner(const HKL_info &hklinfo, const int &nbins_, const ftype power=1.0)
constructor: include whole reflection list in histogram
Definition resol_basisfn.h:80
simple Expcubic basis function
Definition resol_basisfn.h:253
BasisFn_expcubic()
constructor
Definition resol_basisfn.h:256
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:332
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:262
simple Gaussian basis function
Definition resol_basisfn.h:157
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:168
ftype scale(const std::vector< ftype > &params) const
return the scale factor corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:201
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the value of the resolution function
Definition resol_basisfn.cpp:192
ftype u_iso(const std::vector< ftype > &params) const
return the isotropic U corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:206
BasisFn_gaussian()
constructor:
Definition resol_basisfn.h:160
simple linear basis function
Definition resol_basisfn.h:104
ftype f_s(const ftype &s, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.cpp:122
BasisFn_linear(const HKL_data_base &hkldata, const int &nbins_, const ftype power=1.0)
constructor: include only non-missing reflections in histogram
Definition resol_basisfn.h:109
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the derivative of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:133
int num_diagonals() const
number of non-zero diagonals in the upper triangle of the curvatures
Definition resol_basisfn.h:117
FNtype type() const
the type of the function: optionally used to improve convergence
Definition resol_basisfn.h:115
BasisFn_linear(const HKL_info &hklinfo, const int &nbins_, const ftype power=1.0)
constructor: include whole reflection list in histogram
Definition resol_basisfn.h:107
ftype f(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:119
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.h:121
simple anisotropic Gaussian basis function
Definition resol_basisfn.h:230
ftype scale(const std::vector< ftype > &params) const
return the scale factor corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:311
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:239
BasisFn_log_aniso_gaussian()
constructor:
Definition resol_basisfn.h:233
FNtype type() const
the type of the function: optionally used to improve convergence
Definition resol_basisfn.h:242
const BasisFn_base::Fderiv & fderiv_coord(const Coord_reci_orth &xs, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:292
U_aniso_orth u_aniso_orth(const std::vector< ftype > &params) const
return the anisotropic U corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:316
simple log Gaussian basis function
Definition resol_basisfn.h:202
ftype scale(const std::vector< ftype > &params) const
return the scale factor corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:273
BasisFn_log_gaussian()
constructor:
Definition resol_basisfn.h:205
ftype u_iso(const std::vector< ftype > &params) const
return the isotropic U corresponding to the Gaussian parameters
Definition resol_basisfn.cpp:278
FNtype type() const
the type of the function: optionally used to improve convergence
Definition resol_basisfn.h:216
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the value of the resolution function
Definition resol_basisfn.cpp:264
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:213
simple smooth basis function
Definition resol_basisfn.h:131
const BasisFn_base::Fderiv & fderiv(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the derivatives of the resolution function w.r.t. the parameters
Definition resol_basisfn.h:148
ftype f(const HKL &hkl, const Cell &cell, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.h:146
BasisFn_spline(const HKL_data_base &hkldata, const int &nbins_, const ftype power=1.0)
constructor: include only non-missing reflections in histogram
Definition resol_basisfn.h:136
ftype f_s(const ftype &s, const std::vector< ftype > &params) const
the value of the resolution function (override for speed)
Definition resol_basisfn.cpp:152
BasisFn_spline(const HKL_info &hklinfo, const int &nbins_, const ftype power=1.0)
constructor: include whole reflection list in histogram
Definition resol_basisfn.h:134
const BasisFn_base::Fderiv & fderiv_s(const ftype &s, const std::vector< ftype > &params) const
the derivative of the resolution function w.r.t. the parameters
Definition resol_basisfn.cpp:164
FNtype type() const
the type of the function: optionally used to improve convergence
Definition resol_basisfn.h:142
int num_diagonals() const
number of non-zero diagonals in the upper triangle of the curvatures
Definition resol_basisfn.h:144
Cell object.
Definition cell.h:122
orthogonal reciprocal coordinate (length of which is invresolsq)
Definition coords.h:187
Generic ordinal gernerator.
Definition clipper_stats.h:164
HKL_data_base.
Definition hkl_data.h:137
const Cell & base_cell() const
get the parent cell
Definition hkl_data.h:159
HKL list container and tree root.
Definition hkl_info.h:63
reflection 'Miller' index
Definition coords.h:146
Coord_reci_orth coord_reci_orth(const Cell &cell) const
orthogonal-fractional reciprocal space coordinate conversion
Definition coords.h:763
ftype invresolsq(const Cell &cell) const
return inverse resolution squared for this reflection in given cell
Definition coords.h:757
Resolution ordinal gernerator.
Definition resol_basisfn.h:62
void init(const HKL_info &hklinfo, const ftype &power)
initialiser: takes an HKL_info and uses all reflections.
Definition resol_basisfn.cpp:50
Anisotropic orthogonal atomic displacement parameters.
Definition coords.h:427
ftype64 ftype
ftype definition for floating point representation
Definition clipper_precision.h:58