38namespace Test {
namespace Int {
41 namespace MiniModelLin {
61 unsigned char x,
y,
z;
71 case LO_ACE: reg[pc->
y] = pc->
c + reg[pc->
x];
break;
72 case LO_AEC: reg[pc->
y] = reg[pc->
x] + pc->
c;
break;
73 case LO_AEE: reg[pc->
z] = reg[pc->
x] + reg[pc->
y];
break;
74 case LO_SCE: reg[pc->
y] = pc->
c - reg[pc->
x];
break;
75 case LO_SEC: reg[pc->
y] = reg[pc->
x] - pc->
c;
break;
76 case LO_SEE: reg[pc->
z] = reg[pc->
x] - reg[pc->
y];
break;
77 case LO_SE: reg[pc->
y] = -reg[pc->
x];
break;
78 case LO_MCE: reg[pc->
y] = pc->
c * reg[pc->
x];
break;
79 case LO_MEC: reg[pc->
y] = reg[pc->
x] * pc->
c;
break;
101 :
Test(
"MiniModel::LinExpr::Int::"+s,4,-3,3),
lis(lis0) {
106 int reg[3] = {
x[0],
x[1],
x[2]};
125 :
Test(
"MiniModel::LinExpr::Bool::"+s,4,-3,3),
lis(lis0) {
131 if ((
x[i] < 0) || (
x[i] > 1))
133 int reg[3] = {
x[0],
x[1],
x[2]};
140 channel(home,
x[0]),channel(home,
x[1]),channel(home,
x[2])
154 :
Test(
"MiniModel::LinExpr::Mixed::"+s,4,-3,3),
lis(lis0) {
159 if ((
x[2] < 0) || (
x[2] > 1))
161 int reg[3] = {
x[0],
x[1],
x[2]};
168 x[0],
x[1],channel(home,
x[2])
188 :
Test(
"MiniModel::LinRel::Int::"+s+
"::"+
str(irt0),3,-3,3,true),
195 int l_reg[3] = {
x[0],
x[1],
x[2]};
196 int r_reg[3] = {
x[0],
x[1],
x[2]};
236 assert(
r.mode() == RM_EQV);
284 :
Test(
"MiniModel::LinRel::Bool::"+s+
"::"+
str(irt0),3,0,1,true),
291 int l_reg[3] = {
x[0],
x[1],
x[2]};
292 int r_reg[3] = {
x[0],
x[1],
x[2]};
299 y[0] = channel(home,
x[0]); y[1] = channel(home,
x[1]);
300 y[2] = channel(home,
x[2]);
335 assert(
r.mode() == RM_EQV);
337 y[0] = channel(home,
x[0]); y[1] = channel(home,
x[1]);
338 y[2] = channel(home,
x[2]);
386 :
Test(
"MiniModel::LinRel::Mixed::"+s+
"::"+
str(irt0),6,0,1,true),
393 int l_reg[3] = {
x[0],
x[1],
x[2]};
394 int r_reg[3] = {
x[3],
x[4],
x[5]};
429 assert(
r.mode() == RM_EQV);
470 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
474 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
478 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
482 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
486 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
490 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
494 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
498 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
502 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
506 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
510 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
514 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
518 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
522 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
526 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
530 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
534 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
538 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
542 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
546 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
550 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
554 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
558 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
562 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
566 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
570 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
574 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
578 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
582 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
586 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
590 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
594 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
598 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
602 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
606 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
610 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
614 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
618 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
622 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
626 {
LO_AEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
630 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
634 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
638 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
642 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
646 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
650 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
654 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
658 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
662 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
666 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
670 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
674 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
678 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
682 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
686 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
690 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
694 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
698 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
702 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
706 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
710 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
714 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
718 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
722 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
726 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
730 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
734 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
738 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
742 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
746 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
750 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
754 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
758 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
762 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
766 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
770 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
774 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
778 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
782 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
786 {
LO_AEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
790 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
794 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
798 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
802 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
806 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
810 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
814 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
818 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
822 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
826 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
830 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
834 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
838 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
842 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
846 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
850 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
854 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
858 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
862 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
866 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
870 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
874 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
878 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
882 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
886 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
890 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
894 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
898 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
902 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
906 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
910 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
914 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
918 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
922 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
926 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
930 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
934 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
938 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
942 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
946 {
LO_AEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
950 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
954 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
958 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
962 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
966 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
970 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
974 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
978 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
982 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
986 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
990 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
994 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
998 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1002 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1006 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1010 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1014 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1018 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1022 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1026 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1030 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1034 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1038 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1042 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1046 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1050 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1054 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1058 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1062 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1066 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1070 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1074 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1078 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1082 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1086 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1090 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1094 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1098 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1102 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1106 {
LO_AEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1110 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1114 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1118 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1122 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1126 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1130 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1134 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1138 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1142 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1146 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1150 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1154 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1158 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1162 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1166 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1170 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1174 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1178 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1182 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1186 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1190 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1194 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1198 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1202 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1206 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1210 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1214 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1218 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1222 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1226 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1230 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1234 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1238 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1242 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1246 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1250 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1254 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1258 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1262 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1266 {
LO_AEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1270 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1274 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1278 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1282 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1286 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1290 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1294 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1298 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1302 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1306 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1310 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1314 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1318 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1322 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1326 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1330 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1334 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1338 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1342 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1346 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1350 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1354 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1358 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1362 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1366 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1370 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1374 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1378 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1382 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1386 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1390 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1394 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1398 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1402 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1406 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1410 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1414 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1418 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1422 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1426 {
LO_SEE,0,1,0, 0},{
LO_AEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1430 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1434 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1438 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1442 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1446 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1450 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1454 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1458 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1462 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1466 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1470 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1474 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1478 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1482 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1486 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1490 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1494 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1498 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1502 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1506 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1510 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1514 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1518 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1522 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1526 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1530 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1534 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1538 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1542 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1546 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1550 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1554 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1558 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1562 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1566 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1570 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1574 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1578 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1582 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1586 {
LO_SEE,0,1,0, 0},{
LO_SCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1590 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1594 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1598 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1602 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1606 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1610 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1614 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1618 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1622 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1626 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1630 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1634 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1638 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1642 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1646 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1650 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1654 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1658 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1662 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1666 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1670 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1674 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1678 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1682 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1686 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1690 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1694 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1698 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1702 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1706 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1710 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1714 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1718 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1722 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1726 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1730 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1734 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1738 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1742 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1746 {
LO_SEE,0,1,0, 0},{
LO_SEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1750 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1754 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1758 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1762 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1766 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1770 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1774 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1778 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1782 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1786 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1790 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1794 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1798 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1802 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1806 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1810 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1814 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1818 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1822 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1826 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1830 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1834 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1838 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1842 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1846 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1850 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1854 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1858 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_AEE,0,2,0, 0},
1862 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1866 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1870 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1874 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 1},{
LO_SEE,0,2,0, 0},
1878 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1882 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1886 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1890 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_AEE,0,2,0, 0},
1894 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1898 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1902 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1906 {
LO_SEE,0,1,0, 0},{
LO_MCE,0,0,0, 2},{
LO_SEE,0,2,0, 0},
1910 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1914 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1918 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1922 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_AEE,0,2,0, 0},
1926 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1930 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1934 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1938 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-2},{
LO_SEE,0,2,0, 0},
1942 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1946 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1950 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1954 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_AEE,0,2,0, 0},
1958 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1962 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1966 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1970 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0,-1},{
LO_SEE,0,2,0, 0},
1974 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1978 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1982 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1986 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_AEE,0,2,0, 0},
1990 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1994 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
1998 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2002 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 0},{
LO_SEE,0,2,0, 0},
2006 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2010 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2014 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2018 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_AEE,0,2,0, 0},
2022 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2026 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2030 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2034 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 1},{
LO_SEE,0,2,0, 0},
2038 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2042 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2046 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2050 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_AEE,0,2,0, 0},
2054 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2058 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2062 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2066 {
LO_SEE,0,1,0, 0},{
LO_MEC,0,0,0, 2},{
LO_SEE,0,2,0, 0},
2146 for (
int i=0; i<
n; i++) {
2150 }
else if (i < 100) {
2158 for (
int i=0; i<
n/2; i++) {
2162 }
else if (i < 100) {
int n
Number of negative literals for node type.
struct Gecode::@603::NNF::@65::@67 a
For atomic nodes.
Node * x
Pointer to corresponding Boolean expression node.
Passing Boolean variables.
Passing integer arguments.
Passing integer variables.
Linear expressions over integer variables.
Reification specification.
Base class for assignments
Iterator for integer relation types.
void reset(void)
Reset iterator.
Gecode::IntRelType irt(void) const
Return current relation type.
Help class to create and register tests.
Create(void)
Perform creation and registration.
Test linear expressions over Boolean variables
LinExprBool(const LinInstr *lis0, const std::string &s)
Create and register test.
const LinInstr * lis
Linear instruction sequence.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear expressions over integer variables
LinExprInt(const LinInstr *lis0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * lis
Linear instruction sequence.
Test linear expressions over integer and Boolean variables
LinExprMixed(const LinInstr *lis0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * lis
Linear instruction sequence.
Type for representing a linear instruction.
unsigned char z
Instruction arguments, y is destination (or z)
LinOpcode o
Which instruction to execute.
Test linear relations over Boolean variables
const LinInstr * r_lis
Linear instruction sequence for right hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
virtual bool solution(const Assignment &x) const
Test whether x is solution
Gecode::IntRelType irt
Integer relation type to propagate.
LinRelBool(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear relations over integer variables
virtual bool solution(const Assignment &x) const
Test whether x is solution
const LinInstr * l_lis
Linear instruction sequence for left hand side.
Gecode::IntRelType irt
Integer relation type to propagate.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
LinRelInt(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
Test linear relations over integer and Boolean variables
Gecode::IntRelType irt
Integer relation type to propagate.
const LinInstr * l_lis
Linear instruction sequence for left hand side.
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x)
Post constraint on x.
const LinInstr * r_lis
Linear instruction sequence for right hand side.
LinRelMixed(const LinInstr *l_lis0, const LinInstr *r_lis0, Gecode::IntRelType irt0, const std::string &s)
Create and register test.
virtual bool solution(const Assignment &x) const
Test whether x is solution
virtual void post(Gecode::Space &home, Gecode::IntVarArray &x, Gecode::Reify r)
Post constraint on x for r.
bool testfix
Whether to perform fixpoint test.
int rms
Which reification modes are supported.
static std::string str(Gecode::IntPropLevel ipl)
Map integer propagation level to string.
static bool cmp(T x, Gecode::IntRelType r, T y)
Compare x and y with respect to r.
void rel(Home home, FloatVar x0, FloatRelType frt, FloatVar x1)
Post propagator for .
IntRelType
Relation types for integers.
@ RM_EQV
Equivalence for reification (default)
Gecode toplevel namespace
IntVar expr(Home home, const LinIntExpr &e, const IntPropLevels &ipls=IntPropLevels::def)
Post linear expression and return its value.
@ LO_AEC
Add expression and integer.
@ LO_SEC
Subtract expression and integer.
@ LO_ACE
Add integer and expression.
@ LO_MCE
Multiply constant and expression.
@ LO_SCE
Subtract integer and expression.
@ LO_MEC
Multiply constant and expression.
@ LO_SE
Unary subtraction.
@ LO_SEE
Subtract expressions.
Expr eval(const LinInstr *pc, Expr reg[])
Evaluate linear instructions.
#define GECODE_NEVER
Assert that this command is never executed.