My Project
Loading...
Searching...
No Matches
Bfs< GR, TR > Class Template Reference

Detailed Description

template<typename GR, typename TR>
class lemon::Bfs< GR, TR >

This class provides an efficient implementation of the BFS algorithm.

There is also a function-type interface for the BFS algorithm, which is convenient in the simplier cases and it can be used easier.

Template Parameters
GRThe type of the digraph the algorithm runs on. The default type is ListDigraph.
TRThe traits class that defines various types used by the algorithm. By default, it is BfsDefaultTraits<GR>. In most cases, this parameter should not be set directly, consider to use the named template parameters instead.

#include <lemon/bfs.h>

Classes

struct  SetDistMap
 Named parameter for setting More...
 
struct  SetPredMap
 Named parameter for setting More...
 
struct  SetProcessedMap
 Named parameter for setting More...
 
struct  SetReachedMap
 Named parameter for setting More...
 
struct  SetStandardProcessedMap
 Named parameter for setting More...
 

Public Types

typedef TR::Digraph Digraph
 The type of the digraph the algorithm runs on.
 
typedef TR::PredMap PredMap
 The type of the map that stores the predecessor arcs of the shortest paths.
 
typedef TR::DistMap DistMap
 The type of the map that stores the distances of the nodes.
 
typedef TR::ReachedMap ReachedMap
 The type of the map that indicates which nodes are reached.
 
typedef TR::ProcessedMap ProcessedMap
 The type of the map that indicates which nodes are processed.
 
typedef PredMapPath< Digraph, PredMapPath
 The type of the paths.
 
typedef TR Traits
 The traits class of the algorithm.
 

Public Member Functions

 Bfs (const Digraph &g)
 Constructor.
 
 ~Bfs ()
 Destructor.
 
BfspredMap (PredMap &m)
 Sets the map that stores the predecessor arcs.
 
BfsreachedMap (ReachedMap &m)
 Sets the map that indicates which nodes are reached.
 
BfsprocessedMap (ProcessedMap &m)
 Sets the map that indicates which nodes are processed.
 
BfsdistMap (DistMap &m)
 Sets the map that stores the distances of the nodes.
 
Execution Control

The simplest way to execute the BFS algorithm is to use one of the member functions called run().
If you need better control on the execution, you have to call

void init ()
 Initializes the internal data structures.
 
void addSource (Node s)
 Adds a new source node.
 
Node processNextNode ()
 Processes the next node.
 
Node processNextNode (Node target, bool &reach)
 Processes the next node.
 
template<class NM >
Node processNextNode (const NM &nm, Node &rnode)
 Processes the next node.
 
Node nextNode () const
 The next node to be processed.
 
bool emptyQueue () const
 Returns false if there are nodes to be processed.
 
int queueSize () const
 Returns the number of the nodes to be processed.
 
void start ()
 Executes the algorithm.
 
void start (Node t)
 Executes the algorithm until the given target node is reached.
 
template<class NodeBoolMap >
Node start (const NodeBoolMap &nm)
 Executes the algorithm until a condition is met.
 
void run (Node s)
 Runs the algorithm from the given source node.
 
bool run (Node s, Node t)
 Finds the shortest path between s and t.
 
void run ()
 Runs the algorithm to visit all nodes in the digraph.
 
Query Functions

The results of the BFS algorithm can be obtained using these functions.
Either run() or start() should be called before using them.

Path path (Node t) const
 The shortest path to the given node.
 
int dist (Node v) const
 The distance of the given node from the root(s).
 
Arc predArc (Node v) const
 Returns the 'previous arc' of the shortest path tree for the given node.
 
Node predNode (Node v) const
 Returns the 'previous node' of the shortest path tree for the given node.
 
const DistMapdistMap () const
 Returns a const reference to the node map that stores the distances of the nodes.
 
const PredMappredMap () const
 Returns a const reference to the node map that stores the predecessor arcs.
 
bool reached (Node v) const
 Checks if the given node is reached from the root(s).
 

Constructor & Destructor Documentation

◆ Bfs()

template<typename GR , typename TR >
Bfs ( const Digraph & g)
inline

Constructor.

Parameters
gThe digraph the algorithm runs on.

Member Function Documentation

◆ predMap() [1/2]

template<typename GR , typename TR >
Bfs & predMap ( PredMap & m)
inline

Sets the map that stores the predecessor arcs. If you don't use this function before calling run() or init(), an instance will be allocated automatically. The destructor deallocates this automatically allocated map, of course.

Returns
(*this)

◆ reachedMap()

template<typename GR , typename TR >
Bfs & reachedMap ( ReachedMap & m)
inline

Sets the map that indicates which nodes are reached. If you don't use this function before calling run() or init(), an instance will be allocated automatically. The destructor deallocates this automatically allocated map, of course.

Returns
(*this)

◆ processedMap()

template<typename GR , typename TR >
Bfs & processedMap ( ProcessedMap & m)
inline

Sets the map that indicates which nodes are processed. If you don't use this function before calling run() or init(), an instance will be allocated automatically. The destructor deallocates this automatically allocated map, of course.

Returns
(*this)

◆ distMap() [1/2]

template<typename GR , typename TR >
Bfs & distMap ( DistMap & m)
inline

Sets the map that stores the distances of the nodes calculated by the algorithm. If you don't use this function before calling run() or init(), an instance will be allocated automatically. The destructor deallocates this automatically allocated map, of course.

Returns
(*this)

◆ init()

template<typename GR , typename TR >
void init ( )
inline

init() first, then you can add several source nodes with addSource(). Finally the actual path computation can be performed with one of the start() functions.

Initializes the internal data structures.

◆ addSource()

template<typename GR , typename TR >
void addSource ( Node s)
inline

Adds a new source node to the set of nodes to be processed.

◆ processNextNode() [1/3]

template<typename GR , typename TR >
Node processNextNode ( )
inline

Processes the next node.

Returns
The processed node.
Precondition
The queue must not be empty.

◆ processNextNode() [2/3]

template<typename GR , typename TR >
Node processNextNode ( Node target,
bool & reach )
inline

Processes the next node and checks if the given target node is reached. If the target node is reachable from the processed node, then the reach parameter will be set to true.

Parameters
targetThe target node.
Return values
reachIndicates if the target node is reached. It should be initially false.
Returns
The processed node.
Precondition
The queue must not be empty.

◆ processNextNode() [3/3]

template<typename GR , typename TR >
template<class NM >
Node processNextNode ( const NM & nm,
Node & rnode )
inline

Processes the next node and checks if at least one of reached nodes has true value in the nm node map. If one node with true value is reachable from the processed node, then the rnode parameter will be set to the first of such nodes.

Parameters
nmA bool (or convertible) node map that indicates the possible targets.
Return values
rnodeThe reached target node. It should be initially INVALID.
Returns
The processed node.
Precondition
The queue must not be empty.

◆ nextNode()

template<typename GR , typename TR >
Node nextNode ( ) const
inline

Returns the next node to be processed or INVALID if the queue is empty.

◆ emptyQueue()

template<typename GR , typename TR >
bool emptyQueue ( ) const
inline

Returns false if there are nodes to be processed in the queue.

◆ queueSize()

template<typename GR , typename TR >
int queueSize ( ) const
inline

Returns the number of the nodes to be processed in the queue.

◆ start() [1/3]

template<typename GR , typename TR >
void start ( )
inline

Executes the algorithm.

This method runs the BFS algorithm from the root node(s) in order to compute the shortest path to each node.

The algorithm computes

  • the shortest path tree (forest),
  • the distance of each node from the root(s).
    Precondition
    init() must be called and at least one root node should be added with addSource() before using this function.
    Note
    b.start() is just a shortcut of the following code.
    while ( !b.emptyQueue() ) {
    b.processNextNode();
    }

◆ start() [2/3]

template<typename GR , typename TR >
void start ( Node t)
inline

Executes the algorithm until the given target node is reached.

This method runs the BFS algorithm from the root node(s) in order to compute the shortest path to t.

The algorithm computes

  • the shortest path to t,
  • the distance of t from the root(s).
    Precondition
    init() must be called and at least one root node should be added with addSource() before using this function.
    Note
    b.start(t) is just a shortcut of the following code.
    bool reach = false;
    while ( !b.emptyQueue() && !reach ) {
    b.processNextNode(t, reach);
    }

◆ start() [3/3]

template<typename GR , typename TR >
template<class NodeBoolMap >
Node start ( const NodeBoolMap & nm)
inline

Executes the algorithm until a condition is met.

This method runs the BFS algorithm from the root node(s) in order to compute the shortest path to a node v with nm[v] true, if such a node can be found.

Parameters
nmA bool (or convertible) node map. The algorithm will stop when it reaches a node v with nm[v] true.
Returns
The reached node v with nm[v] true or INVALID if no such node was found.
Precondition
init() must be called and at least one root node should be added with addSource() before using this function.
Note
b.start(nm) is just a shortcut of the following code.
Node rnode = INVALID;
while ( !b.emptyQueue() && rnode == INVALID ) {
b.processNextNode(nm, rnode);
}
return rnode;
const Invalid INVALID
Invalid iterators.
Definition base.cc:32

◆ run() [1/3]

template<typename GR , typename TR >
void run ( Node s)
inline

This method runs the BFS algorithm from node s in order to compute the shortest path to each node.

The algorithm computes

  • the shortest path tree,
  • the distance of each node from the root.
    Note
    b.run(s) is just a shortcut of the following code.
    b.init();
    b.addSource(s);
    b.start();

◆ run() [2/3]

template<typename GR , typename TR >
bool run ( Node s,
Node t )
inline

This method runs the BFS algorithm from node s in order to compute the shortest path to node t (it stops searching when t is processed).

Returns
true if t is reachable form s.
Note
Apart from the return value, b.run(s,t) is just a shortcut of the following code.
b.init();
b.addSource(s);
b.start(t);

◆ run() [3/3]

template<typename GR , typename TR >
void run ( )
inline

This method runs the BFS algorithm in order to visit all nodes in the digraph.

Note
b.run(s) is just a shortcut of the following code.
b.init();
for (NodeIt n(gr); n != INVALID; ++n) {
if (!b.reached(n)) {
b.addSource(n);
b.start();
}
}

◆ path()

template<typename GR , typename TR >
Path path ( Node t) const
inline

Returns the shortest path to the given node from the root(s).

Warning
t should be reached from the root(s).
Precondition
Either run() or init() must be called before using this function.

◆ dist()

template<typename GR , typename TR >
int dist ( Node v) const
inline

Returns the distance of the given node from the root(s).

Warning
If node v is not reached from the root(s), then the return value of this function is undefined.
Precondition
Either run() or init() must be called before using this function.

◆ predArc()

template<typename GR , typename TR >
Arc predArc ( Node v) const
inline

This function returns the 'previous arc' of the shortest path tree for the node v, i.e. it returns the last arc of a shortest path from a root to v. It is INVALID if v is not reached from the root(s) or if v is a root.

The shortest path tree used here is equal to the shortest path tree used in predNode() and predMap().

Precondition
Either run() or init() must be called before using this function.

◆ predNode()

template<typename GR , typename TR >
Node predNode ( Node v) const
inline

This function returns the 'previous node' of the shortest path tree for the node v, i.e. it returns the last but one node of a shortest path from a root to v. It is INVALID if v is not reached from the root(s) or if v is a root.

The shortest path tree used here is equal to the shortest path tree used in predArc() and predMap().

Precondition
Either run() or init() must be called before using this function.

◆ distMap() [2/2]

template<typename GR , typename TR >
const DistMap & distMap ( ) const
inline

Returns a const reference to the node map that stores the distances of the nodes calculated by the algorithm.

Precondition
Either run() or init() must be called before using this function.

◆ predMap() [2/2]

template<typename GR , typename TR >
const PredMap & predMap ( ) const
inline

Returns a const reference to the node map that stores the predecessor arcs, which form the shortest path tree (forest).

Precondition
Either run() or init() must be called before using this function.

◆ reached()

template<typename GR , typename TR >
bool reached ( Node v) const
inline

Returns true if v is reached from the root(s).

Precondition
Either run() or init() must be called before using this function.