66 using FluidState =
typename IntensiveQuantities::FluidState;
68 enum { conti0EqIdx = Indices::conti0EqIdx };
73 enum { dimWorld = GridView::dimensionworld };
74 enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
75 enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
76 enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
78 enum { gasCompIdx = FluidSystem::gasCompIdx };
79 enum { oilCompIdx = FluidSystem::oilCompIdx };
80 enum { waterCompIdx = FluidSystem::waterCompIdx };
81 enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
83 static const bool waterEnabled = Indices::waterEnabled;
84 static const bool gasEnabled = Indices::gasEnabled;
85 static const bool oilEnabled = Indices::oilEnabled;
86 static const bool compositionSwitchEnabled = (compositionSwitchIdx >= 0);
109 using ConvectiveMixingModuleParam =
typename ConvectiveMixingModule::ConvectiveMixingModuleParam;
114 using Toolbox = MathToolbox<Evaluation>;
124 FaceDir::DirEnum faceDir;
134 ConvectiveMixingModuleParam convectiveMixingModuleParam;
140 template <
class LhsEval>
142 const ElementContext& elemCtx,
144 unsigned timeIdx)
const
146 const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
151 template <
class LhsEval>
152 static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
153 const IntensiveQuantities& intQuants)
157 const auto& fs = intQuants.fluidState();
160 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
161 if (!FluidSystem::phaseIsActive(phaseIdx)) {
164 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
165 LhsEval surfaceVolume =
166 Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
167 * Toolbox::template decay<LhsEval>(fs.invB(phaseIdx))
168 * Toolbox::template decay<LhsEval>(intQuants.porosity());
170 storage[conti0EqIdx + activeCompIdx] += surfaceVolume;
173 if (phaseIdx == oilPhaseIdx && FluidSystem::enableDissolvedGas()) {
174 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
175 storage[conti0EqIdx + activeGasCompIdx] +=
176 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rs())
181 if (phaseIdx == waterPhaseIdx && FluidSystem::enableDissolvedGasInWater()) {
182 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
183 storage[conti0EqIdx + activeGasCompIdx] +=
184 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rsw())
189 if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedOil()) {
190 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
191 storage[conti0EqIdx + activeOilCompIdx] +=
192 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rv())
197 if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedWater()) {
198 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
199 storage[conti0EqIdx + activeWaterCompIdx] +=
200 Toolbox::template decay<LhsEval>(intQuants.fluidState().Rvw())
208 SolventModule::addStorage(storage, intQuants);
211 ExtboModule::addStorage(storage, intQuants);
214 PolymerModule::addStorage(storage, intQuants);
217 EnergyModule::addStorage(storage, intQuants);
220 FoamModule::addStorage(storage, intQuants);
223 BrineModule::addStorage(storage, intQuants);
226 MICPModule::addStorage(storage, intQuants);
236 const unsigned globalIndexIn,
237 const unsigned globalIndexEx,
238 const IntensiveQuantities& intQuantsIn,
239 const IntensiveQuantities& intQuantsEx,
247 calculateFluxes_(flux,
261 const ElementContext& elemCtx,
266 assert(timeIdx == 0);
269 RateVector darcy = 0.0;
271 const auto& problem = elemCtx.problem();
272 const auto& stencil = elemCtx.stencil(timeIdx);
273 const auto& scvf = stencil.interiorFace(scvfIdx);
275 unsigned interiorDofIdx = scvf.interiorIndex();
276 unsigned exteriorDofIdx = scvf.exteriorIndex();
277 assert(interiorDofIdx != exteriorDofIdx);
281 Scalar Vin = elemCtx.dofVolume(interiorDofIdx, 0);
282 Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, 0);
283 const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
284 const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
285 Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
286 Scalar faceArea = scvf.area();
287 const auto faceDir = faceDirFromDirId(scvf.dirId());
288 Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
293 const Scalar g = problem.gravity()[dimWorld - 1];
294 const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
295 const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
302 const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
303 const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
306 const Scalar distZ = zIn - zEx;
308 const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
309 const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
310 const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
311 const Scalar dispersivity = problem.dispersivity(globalIndexEx, globalIndexIn);
313 const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, faceDir, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity};
315 calculateFluxes_(flux,
322 problem.moduleParams());
325 static void calculateFluxes_(RateVector& flux,
327 const IntensiveQuantities& intQuantsIn,
328 const IntensiveQuantities& intQuantsEx,
329 const unsigned& globalIndexIn,
330 const unsigned& globalIndexEx,
331 const ResidualNBInfo& nbInfo,
332 const ModuleParams& moduleParams)
334 OPM_TIMEBLOCK_LOCAL(calculateFluxes);
335 const Scalar Vin = nbInfo.Vin;
336 const Scalar Vex = nbInfo.Vex;
337 const Scalar distZg = nbInfo.dZg;
338 const Scalar thpres = nbInfo.thpres;
339 const Scalar trans = nbInfo.trans;
340 const Scalar faceArea = nbInfo.faceArea;
341 FaceDir::DirEnum facedir = nbInfo.faceDir;
343 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
344 if (!FluidSystem::phaseIsActive(phaseIdx))
351 short interiorDofIdx = 0;
352 short exteriorDofIdx = 1;
353 Evaluation pressureDifference;
354 ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
372 const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
373 unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
375 const Evaluation transMult = (intQuantsIn.rockCompTransMultiplier() + Toolbox::value(intQuantsEx.rockCompTransMultiplier()))/2;
376 Evaluation darcyFlux;
377 if (globalUpIndex == globalIndexIn) {
378 darcyFlux = pressureDifference * up.mobility(phaseIdx, facedir) * transMult * (-trans / faceArea);
380 darcyFlux = pressureDifference *
381 (Toolbox::value(up.mobility(phaseIdx, facedir)) * transMult * (-trans / faceArea));
384 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
385 darcy[conti0EqIdx + activeCompIdx] = darcyFlux.value() * faceArea;
387 unsigned pvtRegionIdx = up.pvtRegionIndex();
389 if (globalUpIndex == globalIndexIn) {
391 = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
392 const auto& surfaceVolumeFlux = invB * darcyFlux;
393 evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
394 flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
395 if constexpr (enableEnergy) {
396 EnergyModule::template addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>(
397 flux, phaseIdx, darcyFlux, up.fluidState());
400 const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
401 const auto& surfaceVolumeFlux = invB * darcyFlux;
402 evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
403 flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
404 if constexpr (enableEnergy) {
405 EnergyModule::template
406 addPhaseEnthalpyFluxes_<Scalar, Evaluation, FluidState>
407 (flux,phaseIdx,darcyFlux, up.fluidState());
414 static_assert(!enableSolvent,
"Relevant computeFlux() method must be implemented for this module before enabling.");
418 static_assert(!enableExtbo,
"Relevant computeFlux() method must be implemented for this module before enabling.");
422 static_assert(!enablePolymer,
"Relevant computeFlux() method must be implemented for this module before enabling.");
426 if constexpr(enableConvectiveMixing) {
427 ConvectiveMixingModule::addConvectiveMixingFlux(flux,
435 moduleParams.convectiveMixingModuleParam);
439 if constexpr(enableEnergy){
440 const Scalar inAlpha = nbInfo.inAlpha;
441 const Scalar outAlpha = nbInfo.outAlpha;
444 short interiorDofIdx = 0;
445 short exteriorDofIdx = 1;
447 EnergyModule::ExtensiveQuantities::template updateEnergy(heatFlux,
453 intQuantsIn.fluidState(),
454 intQuantsEx.fluidState(),
459 EnergyModule::addHeatFlux(flux, heatFlux);
465 static_assert(!enableFoam,
"Relevant computeFlux() method must be implemented for this module before enabling.");
469 static_assert(!enableBrine,
"Relevant computeFlux() method must be implemented for this module before enabling.");
475 if constexpr(enableDiffusion){
476 typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
477 DiffusionModule::ExtensiveQuantities::update(effectiveDiffusionCoefficient, intQuantsIn, intQuantsEx);
478 const Scalar diffusivity = nbInfo.diffusivity;
479 const Scalar tmpdiffusivity = diffusivity / faceArea;
480 DiffusionModule::addDiffusiveFlux(flux,
481 intQuantsIn.fluidState(),
482 intQuantsEx.fluidState(),
484 effectiveDiffusionCoefficient);
488 if constexpr(enableDispersion){
489 typename DispersionModule::ExtensiveQuantities::ScalarArray normVelocityAvg;
490 DispersionModule::ExtensiveQuantities::update(normVelocityAvg, intQuantsIn, intQuantsEx);
491 const Scalar dispersivity = nbInfo.dispersivity;
492 const Scalar tmpdispersivity = dispersivity / faceArea;
493 DispersionModule::addDispersiveFlux(flux,
494 intQuantsIn.fluidState(),
495 intQuantsEx.fluidState(),
501 static_assert(!enableMICP,
"Relevant computeFlux() method must be implemented for this module before enabling.");
506 template <
class BoundaryConditionData>
507 static void computeBoundaryFlux(RateVector& bdyFlux,
508 const Problem& problem,
509 const BoundaryConditionData& bdyInfo,
510 const IntensiveQuantities& insideIntQuants,
511 unsigned globalSpaceIdx)
513 if (bdyInfo.type == BCType::NONE) {
515 }
else if (bdyInfo.type == BCType::RATE) {
516 computeBoundaryFluxRate(bdyFlux, bdyInfo);
517 }
else if (bdyInfo.type == BCType::FREE || bdyInfo.type == BCType::DIRICHLET) {
518 computeBoundaryFluxFree(problem, bdyFlux, bdyInfo, insideIntQuants, globalSpaceIdx);
519 }
else if (bdyInfo.type == BCType::THERMAL) {
520 computeBoundaryThermal(problem, bdyFlux, bdyInfo, insideIntQuants, globalSpaceIdx);
522 throw std::logic_error(
"Unknown boundary condition type " + std::to_string(
static_cast<int>(bdyInfo.type)) +
" in computeBoundaryFlux()." );
526 template <
class BoundaryConditionData>
527 static void computeBoundaryFluxRate(RateVector& bdyFlux,
528 const BoundaryConditionData& bdyInfo)
530 bdyFlux.setMassRate(bdyInfo.massRate, bdyInfo.pvtRegionIdx);
533 template <
class BoundaryConditionData>
534 static void computeBoundaryFluxFree(
const Problem& problem,
536 const BoundaryConditionData& bdyInfo,
537 const IntensiveQuantities& insideIntQuants,
538 unsigned globalSpaceIdx)
540 OPM_TIMEBLOCK_LOCAL(computeBoundaryFluxFree);
541 std::array<short, numPhases> upIdx;
542 std::array<short, numPhases> dnIdx;
543 std::array<Evaluation, numPhases> volumeFlux;
544 std::array<Evaluation, numPhases> pressureDifference;
546 ExtensiveQuantities::calculateBoundaryGradients_(problem,
549 bdyInfo.boundaryFaceIndex,
552 bdyInfo.exFluidState,
562 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
563 if (!FluidSystem::phaseIsActive(phaseIdx)) {
566 const auto& pBoundary = bdyInfo.exFluidState.pressure(phaseIdx);
567 const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
568 const unsigned pvtRegionIdx = insideIntQuants.pvtRegionIndex();
571 const auto& darcyFlux = volumeFlux[phaseIdx];
573 if (pBoundary < pInside) {
575 const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(insideIntQuants.fluidState(), phaseIdx, pvtRegionIdx);
576 Evaluation surfaceVolumeFlux = invB * darcyFlux;
577 evalPhaseFluxes_<Evaluation>(tmp,
579 insideIntQuants.pvtRegionIndex(),
581 insideIntQuants.fluidState());
582 if constexpr (enableEnergy) {
583 EnergyModule::template
584 addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>
585 (tmp, phaseIdx, darcyFlux, insideIntQuants.fluidState());
587 }
else if (pBoundary > pInside) {
589 using ScalarFluidState =
decltype(bdyInfo.exFluidState);
590 const auto& invB = getInvB_<FluidSystem, ScalarFluidState, Scalar>(bdyInfo.exFluidState, phaseIdx, pvtRegionIdx);
591 Evaluation surfaceVolumeFlux = invB * darcyFlux;
592 evalPhaseFluxes_<Scalar>(tmp,
594 insideIntQuants.pvtRegionIndex(),
596 bdyInfo.exFluidState);
597 if constexpr (enableEnergy) {
598 EnergyModule::template
599 addPhaseEnthalpyFluxes_<Scalar, Evaluation, ScalarFluidState>
603 bdyInfo.exFluidState);
607 for (
unsigned i = 0; i < tmp.size(); ++i) {
608 bdyFlux[i] += tmp[i];
613 if constexpr(enableEnergy){
616 Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
619 EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
624 bdyInfo.exFluidState);
625 EnergyModule::addHeatFlux(bdyFlux, heatFlux);
628 static_assert(!enableSolvent,
"Relevant treatment of boundary conditions must be implemented before enabling.");
629 static_assert(!enablePolymer,
"Relevant treatment of boundary conditions must be implemented before enabling.");
630 static_assert(!enableMICP,
"Relevant treatment of boundary conditions must be implemented before enabling.");
636 for (
unsigned i = 0; i < numEq; ++i) {
637 Valgrind::CheckDefined(bdyFlux[i]);
639 Valgrind::CheckDefined(bdyFlux);
643 template <
class BoundaryConditionData>
644 static void computeBoundaryThermal(
const Problem& problem,
646 const BoundaryConditionData& bdyInfo,
647 const IntensiveQuantities& insideIntQuants,
648 [[maybe_unused]]
unsigned globalSpaceIdx)
650 OPM_TIMEBLOCK_LOCAL(computeBoundaryThermal);
655 if constexpr(enableEnergy){
658 Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
661 EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
666 bdyInfo.exFluidState);
667 EnergyModule::addHeatFlux(bdyFlux, heatFlux);
671 for (
unsigned i = 0; i < numEq; ++i) {
672 Valgrind::CheckDefined(bdyFlux[i]);
674 Valgrind::CheckDefined(bdyFlux);
678 static void computeSource(RateVector& source,
679 const Problem& problem,
680 unsigned globalSpaceIdex,
683 OPM_TIMEBLOCK_LOCAL(computeSource);
685 problem.source(source, globalSpaceIdex, timeIdx);
689 static_assert(!enableMICP,
"Relevant addSource() method must be implemented for this module before enabling.");
697 static void computeSourceDense(RateVector& source,
698 const Problem& problem,
699 unsigned globalSpaceIdex,
703 problem.addToSourceDense(source, globalSpaceIdex, timeIdx);
707 static_assert(!enableMICP,
"Relevant addSource() method must be implemented for this module before enabling.");
719 const ElementContext& elemCtx,
721 unsigned timeIdx)
const
723 OPM_TIMEBLOCK_LOCAL(computeSource);
725 elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
728 MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
731 if constexpr(enableEnergy)
735 template <
class UpEval,
class Flu
idState>
736 static void evalPhaseFluxes_(RateVector& flux,
738 unsigned pvtRegionIdx,
739 const ExtensiveQuantities& extQuants,
740 const FluidState& upFs)
743 const auto& invB = getInvB_<FluidSystem, FluidState, UpEval>(upFs, phaseIdx, pvtRegionIdx);
744 const auto& surfaceVolumeFlux = invB * extQuants.volumeFlux(phaseIdx);
745 evalPhaseFluxes_<UpEval>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, upFs);
752 template <
class UpEval,
class Eval,
class Flu
idState>
755 unsigned pvtRegionIdx,
756 const Eval& surfaceVolumeFlux,
757 const FluidState& upFs)
759 unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
761 if (blackoilConserveSurfaceVolume)
762 flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux;
764 flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux*FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
766 if (phaseIdx == oilPhaseIdx) {
768 if (FluidSystem::enableDissolvedGas()) {
769 const auto& Rs = BlackOil::getRs_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
771 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
772 if (blackoilConserveSurfaceVolume)
773 flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux;
775 flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
777 }
else if (phaseIdx == waterPhaseIdx) {
779 if (FluidSystem::enableDissolvedGasInWater()) {
780 const auto& Rsw = BlackOil::getRsw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
782 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
783 if (blackoilConserveSurfaceVolume)
784 flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux;
786 flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
789 else if (phaseIdx == gasPhaseIdx) {
791 if (FluidSystem::enableVaporizedOil()) {
792 const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
794 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
795 if (blackoilConserveSurfaceVolume)
796 flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux;
798 flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux*FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
801 if (FluidSystem::enableVaporizedWater()) {
802 const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
804 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
805 if (blackoilConserveSurfaceVolume)
806 flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux;
808 flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux*FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
824 template <
class Scalar>
827 if (blackoilConserveSurfaceVolume)
835 unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
836 container[conti0EqIdx + activeWaterCompIdx] *=
837 FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
841 unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
842 container[conti0EqIdx + activeGasCompIdx] *=
843 FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
847 unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
848 container[conti0EqIdx + activeOilCompIdx] *=
849 FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
854 static FaceDir::DirEnum faceDirFromDirId(
const int dirId)
858 return FaceDir::DirEnum::Unknown;
860 return FaceDir::FromIntersectionIndex(dirId);