108 void update(
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
110 ParentType::update(elemCtx, dofIdx, timeIdx);
111 EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
113 const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
114 const auto& problem = elemCtx.problem();
119 Evaluation sumSat = 0.0;
120 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
121 fluidState_.setSaturation(phaseIdx, priVars.explicitSaturationValue(phaseIdx, timeIdx));
122 Opm::Valgrind::CheckDefined(fluidState_.saturation(phaseIdx));
123 sumSat += fluidState_.saturation(phaseIdx);
125 Opm::Valgrind::CheckDefined(priVars.implicitSaturationIdx());
126 Opm::Valgrind::CheckDefined(sumSat);
127 fluidState_.setSaturation(priVars.implicitSaturationIdx(), 1.0 - sumSat);
134 const MaterialLawParams& materialParams =
135 problem.materialLawParams(elemCtx, dofIdx, timeIdx);
137 MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
140 const Evaluation& p0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
141 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
142 fluidState_.setPressure(phaseIdx, p0 + (pC[phaseIdx] - pC[0]));
148 typename FluidSystem::template ParameterCache<Evaluation> paramCache;
149 unsigned lowestPresentPhaseIdx = priVars.lowestPresentPhaseIdx();
150 unsigned numNonPresentPhases = 0;
151 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
152 if (!priVars.phaseIsPresent(phaseIdx))
153 ++numNonPresentPhases;
157 if (numNonPresentPhases == numPhases - 1) {
160 Evaluation sumx = 0.0;
161 for (
unsigned compIdx = 1; compIdx < numComponents; ++compIdx) {
162 const Evaluation& x = priVars.makeEvaluation(switch0Idx + compIdx - 1, timeIdx);
163 fluidState_.setMoleFraction(lowestPresentPhaseIdx, compIdx, x);
168 fluidState_.setMoleFraction(lowestPresentPhaseIdx, 0, 1 - sumx);
173 ComputeFromReferencePhase::solve(fluidState_, paramCache,
174 lowestPresentPhaseIdx,
180 unsigned numAuxConstraints = numComponents + numNonPresentPhases - numPhases;
181 Opm::MMPCAuxConstraint<Evaluation> auxConstraints[numComponents];
184 unsigned switchIdx = 0;
185 for (; switchIdx < numPhases - 1; ++switchIdx) {
186 unsigned compIdx = switchIdx + 1;
187 unsigned switchPhaseIdx = switchIdx;
188 if (switchIdx >= lowestPresentPhaseIdx)
191 if (!priVars.phaseIsPresent(switchPhaseIdx)) {
192 auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
193 priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
198 for (; auxIdx < numAuxConstraints; ++auxIdx, ++switchIdx) {
199 unsigned compIdx = numPhases - numNonPresentPhases + auxIdx;
200 auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
201 priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
207 MiscibleMultiPhaseComposition::solve(fluidState_, paramCache,
208 priVars.phasePresence(),
218 Scalar myNan = std::numeric_limits<Scalar>::quiet_NaN();
219 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
220 fluidState_.setEnthalpy(phaseIdx, myNan);
229 MaterialLaw::relativePermeabilities(relativePermeability_,
230 materialParams, fluidState_);
231 Opm::Valgrind::CheckDefined(relativePermeability_);
234 for (
unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
235 mobility_[phaseIdx] =
236 relativePermeability_[phaseIdx] /
fluidState().viscosity(phaseIdx);
239 porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
240 Opm::Valgrind::CheckDefined(porosity_);
243 intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
246 FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
249 EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
252 DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
254 fluidState_.checkDefined();