32#define pSetCoeff(p,n) p_SetCoeff(p,n,currRing)
35#define pGetOrder(p) p_GetOrder(p, currRing)
38#define pGetComp(p) (int)__p_GetComp(p, currRing)
39#define pSetComp(p,v) p_SetComp(p,v, currRing)
42#define pGetExp(p,i) p_GetExp(p, i, currRing)
43#define pSetExp(p,i,v) p_SetExp(p, i, v, currRing)
44#define pIncrExp(p,i) p_IncrExp(p,i, currRing)
45#define pDecrExp(p,i) p_DecrExp(p,i, currRing)
46#define pAddExp(p,i,v) p_AddExp(p,i,v, currRing)
47#define pSubExp(p,i,v) p_SubExp(p,i,v, currRing)
48#define pMultExp(p,i,v) p_MultExp(p,i,v, currRing)
49#define pGetExpSum(p1, p2, i) p_GetExpSum(p1, p2, i, currRing)
50#define pGetExpDiff(p1, p2, i) p_GetExpDiff(p1, p2, i, currRing)
60#define pNew() p_New(currRing)
62#define pInit() p_Init(currRing,currRing->PolyBin)
65#define pLmInit(p) p_LmInit(p, currRing)
68#define pHead(p) p_Head(p, currRing)
75#define pLmFreeAndNext(p) p_LmFreeAndNext(p, currRing)
77#define pLmDelete(p) p_LmDelete(p, currRing)
79#define pLmDeleteAndNext(p) p_LmDeleteAndNext(p, currRing)
87#define pExpVectorCopy(d_p, s_p) p_ExpVectorCopy(d_p, s_p, currRing)
88#define pExpVectorAdd(p1, p2) p_ExpVectorAdd(p1, p2, currRing)
89#define pExpVectorSub(p1, p2) p_ExpVectorSub(p1, p2, currRing)
90#define pExpVectorAddSub(p1, p2, p3) p_ExpVectorAddSub(p1, p2, p3, currRing)
91#define pExpVectorSum(pr, p1, p2) p_ExpVectorSum(pr, p1, p2, currRing)
92#define pExpVectorDiff(pr, p1, p2) p_ExpVectorDiff(pr, p1, p2, currRing)
97#define pGetExpV(p, e) p_GetExpV(p, e, currRing)
98#define pSetExpV(p, e) p_SetExpV(p, e, currRing)
106#define pLmCmp(p,q) p_LmCmp(p,q,currRing)
109#define pLmCmpAction(p,q, actionE, actionG, actionS) \
110 _p_LmCmpAction(p,q,currRing, actionE, actionG,actionS)
112#define pLmEqual(p1, p2) p_ExpVectorEqual(p1, p2, currRing)
116#define pCmp(p1, p2) p_Cmp(p1, p2, currRing)
124#define pLtCmp(p,q) p_LtCmp(p,q,currRing)
125#define pLtCmpNoAbs(p,q) p_LtCmpNoAbs(p,q,currRing)
126#define pLtCmpOrdSgnDiffM(p,q) p_LtCmpOrdSgnDiffM(p,q,currRing)
127#define pLtCmpOrdSgnDiffP(p,q) p_LtCmpOrdSgnDiffP(p,q,currRing)
128#define pLtCmpOrdSgnEqM(p,q) p_LtCmpOrdSgnEqM(p,q,currRing)
129#define pLtCmpOrdSgnEqP(p,q) p_LtCmpOrdSgnEqP(p,q,currRing)
139#define pDivisibleBy(a, b) p_DivisibleBy(a,b,currRing)
141#define pLmDivisibleBy(a,b) p_LmDivisibleBy(a,b,currRing)
143#define pLmDivisibleByNoComp(a, b) p_LmDivisibleByNoComp(a,b,currRing)
147#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b) \
148 p_LmShortDivisibleBy(a, sev_a, b, not_sev_b, currRing)
149#define pLmRingShortDivisibleBy(a, sev_a, b, not_sev_b) \
150 p_LmRingShortDivisibleBy(a, sev_a, b, not_sev_b, currRing)
153#define pGetShortExpVector(a) p_GetShortExpVector(a, currRing)
160#define pDivisibleByRingCase(f,g) p_DivisibleByRingCase(f,g,currRing)
166poly
p_Divide(poly a, poly
b,
const ring r);
171poly
p_DivRem(poly a, poly
b, poly &rest,
const ring r);
186#define pCopy(p) p_Copy(p, currRing)
187#define pDelete(p_ptr) p_Delete(p_ptr, currRing)
199#define pNeg(p) p_Neg(p, currRing)
200#define ppMult_nn(p, n) pp_Mult_nn(p, n, currRing)
201#define pMult_nn(p, n) p_Mult_nn(p, n, currRing)
202#define ppMult_mm(p, m) pp_Mult_mm(p, m, currRing)
203#define pMult_mm(p, m) p_Mult_mm(p, m, currRing)
204#define pAdd(p, q) p_Add_q(p, q, currRing)
205#define pPower(p, q) p_Power(p, q, currRing)
206#define pMinus_mm_Mult_qq(p, m, q) p_Minus_mm_Mult_qq(p, m, q, currRing)
207#define pPlus_mm_Mult_qq(p, m, q) p_Plus_mm_Mult_qq(p, m, q, currRing)
208#define pMult(p, q) p_Mult_q(p, q, currRing)
209#define ppMult_qq(p, q) pp_Mult_qq(p, q, currRing)
211#define ppMult_Coeff_mm_DivSelect(p, m) pp_Mult_Coeff_mm_DivSelect(p, m, currRing)
218#define pSortMerger(p) p_SortMerge(p, currRing)
219#define pSort(p) p_SortMerge(p, currRing)
222#define pSortAdd(p) p_SortAdd(p, currRing)
228#define pSortCompCorrect(p) pSort(p)
237#define pIsConstantComp(p) p_IsConstantComp(p, currRing)
239#define pIsConstant(p) p_IsConstant(p,currRing)
241#define pIsUnit(p) p_IsUnit(p,currRing)
243#define pLmIsConstantComp(p) p_LmIsConstantComp(p, currRing)
244#define pLmIsConstant(p) p_LmIsConstant(p,currRing)
247#define pIsConstantPoly(p) p_IsConstantPoly(p, currRing)
249#define pIsPurePower(p) p_IsPurePower(p, currRing)
250#define pIsUnivariate(p) p_IsUnivariate(p, currRing)
251#define pIsVector(p) (pGetComp(p)>0)
252#define pGetVariables(p,e) p_GetVariables(p, e, currRing)
263#define pHasNotCFRing(p1,p2) p_HasNotCFRing(p1,p2,currRing)
264#define pHasNotCF(p1,p2) p_HasNotCF(p1,p2,currRing)
266#define pSplit(p,r) p_Split(p,r)
272#define pSetm(p) p_Setm(p, currRing)
274#define pSetmComp(p) p_Setm(p, currRing)
281#define pWeight(i) p_Weight(i,currRing)
284#define pWTotaldegree(p) p_WTotaldegree(p,currRing)
285#define pWDegree(p) p_WDegree(p,currRing)
288#define pSub(a,b) p_Sub(a,b,currRing)
290#define pmInit(a,b) p_mInit(a,b,currRing)
294#define pMDivide(a,b) p_MDivide(a,b,currRing)
295#define pDivideM(a,b) p_DivideM(a,b,currRing)
296#define pLcm(a,b,m) p_Lcm(a,b,m,currRing)
297#define pDiff(a,b) p_Diff(a,b,currRing)
298#define pDiffOp(a,b,m) p_DiffOp(a,b,m,currRing)
300#define pMaxComp(p) p_MaxComp(p, currRing)
301#define pMinComp(p) p_MinComp(p, currRing)
303#define pOneComp(p) p_OneComp(p, currRing)
304#define pSetCompP(a,i) p_SetCompP(a, i, currRing)
313#define pISet(i) p_ISet(i,currRing)
314#define pNSet(n) p_NSet(n,currRing)
316#define pOne() p_One(currRing)
318#define pNormalize(p) p_Normalize(p,currRing)
319#define pSize(p) p_Size(p,currRing)
323#define pHomogen(p,varnum) p_Homogen(p,varnum,currRing)
330#define pIsHomogen(p) p_IsHomogen(p,currRing)
333#define pVectorHasUnitB(p,k) p_VectorHasUnitB(p,k,currRing)
334#define pVectorHasUnit(p,k,l) p_VectorHasUnit(p,k,l,currRing)
361#define pDeleteComp(p,k) p_DeleteComp(p,k,currRing)
366#define pSubst(p,n,e) p_Subst(p,n,e,currRing)
367#define ppJet(p,m) pp_Jet(p,m,currRing)
368#define pJet(p,m) p_Jet(p,m,currRing)
369#define ppJetW(p,m,iv) pp_JetW(p,m,iv,currRing)
370#define pJetW(p,m,iv) p_JetW(p,m,iv,currRing)
371#define pMinDeg(p,w) p_MinDeg(p,w,currRing)
372#define pSeries(n,p,u,w) p_Series(n,p,u,w,currRing)
377#define pDegW(p,w) p_DegW(p,w,currRing)
381#define pVar(m) p_Var(m,currRing)
400#define pEqualPolys(p1,p2) p_EqualPolys(p1,p2,currRing)
415#define pTest(p) _p_Test(p, currRing, PDEBUG)
416#define pLmTest(p) _p_LmTest(p, currRing, PDEBUG)
420#define pTest(p) do {} while (0)
421#define pLmTest(p) do {} while (0)
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
static BOOLEAN length(leftv result, leftv arg)
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
int lcm(unsigned long *l, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
The main handler for Singular numbers which are suitable for Singular polynomials.
void p_Norm(poly p1, const ring r)
poly p_Last(const poly p, int &l, const ring r)
char * p_String(poly p, ring lmRing, ring tailRing)
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
void p_Write(poly p, ring lmRing, ring tailRing)
void p_Write0(poly p, ring lmRing, ring tailRing)
static void p_LmFree(poly p, ring)
static long p_Totaldegree(poly p, const ring r)
void p_wrp(poly p, ring lmRing, ring tailRing)
static long pTotaldegree(poly p)
void pSetPolyComp(poly p, int comp)
poly pp_Divide(poly a, poly b, const ring r)
polynomial division a/b, ignoring the rest via singclap_pdivide resp. idLift does not destroy a,...
poly p_Divide(poly a, poly b, const ring r)
polynomial division a/b, ignoring the rest via singclap_pdivide resp. idLift destroys a,...
void rChangeCurrRing(ring r)
BOOLEAN pCompareChain(poly p, poly p1, poly p2, poly lcm, const ring R=currRing)
Returns TRUE if.
BOOLEAN pIsHomogeneous(poly p)
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
BOOLEAN pCompareChainPart(poly p, poly p1, poly p2, poly lcm, const ring R=currRing)
poly p_DivRem(poly a, poly b, poly &rest, const ring r)
static poly pLast(poly a, int &length)
returns the length of a polynomial (numbers of monomials) respect syzComp
void pTakeOutComp(poly *p, long comp, poly *q, int *lq, const ring R=currRing)
Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other ...
EXTERN_VAR coeffs coeffs_BIGINT
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g